Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities

Identifieur interne : 000274 ( Russie/Analysis ); précédent : 000273; suivant : 000275

Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities

Auteurs : RBID : Pascal:07-0368585

Descripteurs français

English descriptors

Abstract

Tunneling conductivity and point contact spectroscopy between heavy fermion metal and a simple metallic point contact may serve as a convenient probing tool for non-Fermi liquid behavior. Landau Fermi liquid theory predicts that the differential conductivity is a symmetric function of voltage bias. This symmetry, in fact, holds if so called particle-hole symmetry is preserved. Here, we show that the situation can be different when one of the two metals is a heavy fermion one whose electronic system is a heavy fermion liquid. When the heavy fermion liquid undergoes fermion condensation quantum phase transition, the particle-hole symmetry in the excitation spectra is violated making both the differential tunneling conductivity and dynamic conductance asymmetric as a function of applied voltage. This asymmetry can be observed when the heavy fermion metal is either normal or superconducting. We discuss also the possible experiments to study the above asymmetry and note that asymmetric conductivity has been recently observed in measurements on CeCoIn5.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0368585

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities</title>
<author>
<name sortKey="Shaginyan, V R" uniqKey="Shaginyan V">V. R. Shaginyan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Petersburg Nuclear Physics Institute, RAS</s1>
<s2>Gatchina 188300</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Gatchina 188300</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Komi Science Center, Ural Division, RAS</s1>
<s2>Syktyvkar 167982</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Syktyvkar 167982</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Popov, K G" uniqKey="Popov K">K. G. Popov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Petersburg Nuclear Physics Institute, RAS</s1>
<s2>Gatchina 188300</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Gatchina 188300</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Komi Science Center, Ural Division, RAS</s1>
<s2>Syktyvkar 167982</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Syktyvkar 167982</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stephanovich, V A" uniqKey="Stephanovich V">V. A. Stephanovich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Mathematics and Informatics, Opole University</s1>
<s2>45-052 Opole</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>45-052 Opole</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kirichenko, E V" uniqKey="Kirichenko E">E. V. Kirichenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Mathematics and Informatics, Opole University</s1>
<s2>45-052 Opole</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
<wicri:noRegion>45-052 Opole</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0368585</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0368585 INIST</idno>
<idno type="RBID">Pascal:07-0368585</idno>
<idno type="wicri:Area/Main/Corpus">007696</idno>
<idno type="wicri:Area/Main/Repository">007E77</idno>
<idno type="wicri:Area/Russie/Extraction">000274</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Asymmetry</term>
<term>Cerium alloys</term>
<term>Cobalt alloys</term>
<term>Electrical conductivity</term>
<term>Excitation spectrum</term>
<term>Fermi liquid</term>
<term>Heavy fermions</term>
<term>Indium alloys</term>
<term>Landau theory</term>
<term>Non Fermi liquid</term>
<term>Point contact spectroscopy</term>
<term>Quantum phase transition</term>
<term>Quasiparticles</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet tunnel</term>
<term>Liquide non Fermi</term>
<term>Spectrométrie contact ponctuel</term>
<term>Conductivité électrique</term>
<term>Théorie Landau</term>
<term>Liquide Fermi</term>
<term>Transition phase quantique</term>
<term>Spectre excitation</term>
<term>Asymétrie</term>
<term>Quasiparticule</term>
<term>Fermion lourd</term>
<term>Cérium alliage</term>
<term>Cobalt alliage</term>
<term>Indium alliage</term>
<term>CeCoIn5</term>
<term>7215Q</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tunneling conductivity and point contact spectroscopy between heavy fermion metal and a simple metallic point contact may serve as a convenient probing tool for non-Fermi liquid behavior. Landau Fermi liquid theory predicts that the differential conductivity is a symmetric function of voltage bias. This symmetry, in fact, holds if so called particle-hole symmetry is preserved. Here, we show that the situation can be different when one of the two metals is a heavy fermion one whose electronic system is a heavy fermion liquid. When the heavy fermion liquid undergoes fermion condensation quantum phase transition, the particle-hole symmetry in the excitation spectra is violated making both the differential tunneling conductivity and dynamic conductance asymmetric as a function of applied voltage. This asymmetry can be observed when the heavy fermion metal is either normal or superconducting. We discuss also the possible experiments to study the above asymmetry and note that asymmetric conductivity has been recently observed in measurements on CeCoIn
<sub>5</sub>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>442</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 15th International Conference on Solid Compounds of Transition Elements, July 15-20, 2006, Kraków, Poland</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SHAGINYAN (V. R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>POPOV (K. G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STEPHANOVICH (V. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KIRICHENKO (E. V.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BARAN (Stanisław)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ŁATKA (Kazimierz)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>JAWORSKA-GOŁAB (Teresa)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SZYTUŁA (Andrzej)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>SUSKI (Wojciech)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>TOBOŁA (Janusz)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Petersburg Nuclear Physics Institute, RAS</s1>
<s2>Gatchina 188300</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Komi Science Center, Ural Division, RAS</s1>
<s2>Syktyvkar 167982</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Mathematics and Informatics, Opole University</s1>
<s2>45-052 Opole</s2>
<s3>POL</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4</s1>
<s2>30-059 Kraków</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410</s1>
<s2>50-950 Wrocław</s2>
<s3>POL</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30</s1>
<s2>30-059 Cracow</s2>
<s3>POL</s3>
<sZ>6 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Jagiellonian University. Institute of Physics</s1>
<s3>POL</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>29-33</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000149863360050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0368585</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tunneling conductivity and point contact spectroscopy between heavy fermion metal and a simple metallic point contact may serve as a convenient probing tool for non-Fermi liquid behavior. Landau Fermi liquid theory predicts that the differential conductivity is a symmetric function of voltage bias. This symmetry, in fact, holds if so called particle-hole symmetry is preserved. Here, we show that the situation can be different when one of the two metals is a heavy fermion one whose electronic system is a heavy fermion liquid. When the heavy fermion liquid undergoes fermion condensation quantum phase transition, the particle-hole symmetry in the excitation spectra is violated making both the differential tunneling conductivity and dynamic conductance asymmetric as a function of applied voltage. This asymmetry can be observed when the heavy fermion metal is either normal or superconducting. We discuss also the possible experiments to study the above asymmetry and note that asymmetric conductivity has been recently observed in measurements on CeCoIn
<sub>5</sub>
.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B15Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Liquide non Fermi</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Non Fermi liquid</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Spectrométrie contact ponctuel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Point contact spectroscopy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Théorie Landau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Landau theory</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Liquide Fermi</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Fermi liquid</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Transition phase quantique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Quantum phase transition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Asymétrie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Asymmetry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Quasiparticule</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Quasiparticles</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Fermion lourd</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Heavy fermions</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cérium alliage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cerium alloys</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cobalt alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Cobalt alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>CeCoIn5</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>7215Q</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fN21>
<s1>239</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Solid Compounds of Transition Elements</s1>
<s2>15</s2>
<s3>Kraków POL</s3>
<s4>2006-07-15</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000274 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000274 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:07-0368585
   |texte=   Asymmetrical tunneling in heavy fermion metals as a possible probe for their non-Fermi liquid peculiarities
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024